			1 8		
Reg. No. :	17-11-				

Question Paper Code: 71469

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Seventh Semester

Electronics and Communication Engineering

EC 2403/EC 73/10144 EC 703 — RF AND MICROWAVE ENGINEERING

(Regulation 2008/2010)

(Common to PTEC 2403 – RF and Microwave Engineering for B.E. (Part-Time) Sixth Semester Electronics and Communication Engineering – Regulation 2009)

Time: Three hours Maximum: 100 marks

Smith chart is to be provided.

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Mention any four differences between low frequency and high frequency microwave circuits.
- 2. Draw the high frequency equivalent circuit of the resistor and inductor.
- 3. Draw the VSWR circle for reflection co efficient 1.
- 4. Draw the contour of Nodal Quality Factor Q = 3.
- 5. Name any two microwave passive devices which make use of Faraday rotation.
- 6. What are the properties of S matrix?
- 7. Draw the equivalent circuit of Varactor diode.
- 8. What is the need for matching network?
- 9. What are the limitations of conventional vacuum devices?
- 10. Mention the major differences between the TWT and Klystron.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Derive Z and Y matrix formulation of multi port network. (8)
 - (ii) State and prove the symmetry of S matrix for a reciprocal network.

(8)

Or

(b) Explain the scattering matrix for lossless junction.

12.	(a)	(i)	Write the mathematical analysis of amplifier stability.	(8)				
		(ii)	Design a microwave amplifier for maximum transducer power gain	n. (8)				
			\mathbf{Or}					
	(b)	two	ng the Smith chart design any two possible configuration of discreelement matching networks to match the source impedan = $(50+j25)\Omega$ to the load $Z_L=(25-j50)\Omega$. Assume the characterist	ce				
		imp	edance of $Z_0 = 50 \Omega$ and operating frequency of 2 GHz. (1)	6)				
13.	(a)	(i)	Explain the concept of N port scattering matrix representation. ((8)				
		(ii)	With neat diagram explain the operation of phase shifter and sho its phase change is $2\theta + 4\beta l$.	(8)				
			Or					
	(b)	Witl	n neat diagram explain the operation of the following devices:					
		(i)	Gyrator ((8)				
		(ii)	Two hole directional coupler.	(8)				
14.	(a)		lain the working principle of Gunn diode with two valley model ar its characteristics.	nd				
			\mathbf{Or}					
	(b)		at are avalanche transit time devices? Explain the operation ar truction of IMPATT diode.	ıd				
15.	(a)		Explain the π mode of operation of magnetron. Mention few high frequency limitations.					
			Or					
	(b)	(i)	Describe how can the power of a microwave generator be measure using bolometer. (1					
		, (ii)	Assume TE_{10} wave transmissions inside a wave guide of dimension $a=4$ cm, $b=2.5$ cm. The distance measured between twice	ns				